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Abstract

Visual fine-tuning has garnered significant attention with
the rise of pre-trained vision models. The current prevailing
method, full fine-tuning, suffers from the issue of knowledge
forgetting as it focuses solely on fitting the downstream train-
ing set. In this paper, we propose a novel weight rollback-
based fine-tuning method called OLOR (One step Learning,
One step Review). OLOR combines fine-tuning with opti-
mizers, incorporating a weight rollback term into the weight
update term at each step. This ensures consistency in the
weight range of upstream and downstream models, effec-
tively mitigating knowledge forgetting and enhancing fine-
tuning performance. In addition, a layer-wise penalty is pre-
sented to employ penalty decay and the diversified decay
rate to adjust the weight rollback levels of layers for adapt-
ing varying downstream tasks. Through extensive experi-
ments on various tasks such as image classification, object
detection, semantic segmentation, and instance segmentation,
we demonstrate the general applicability and state-of-the-art
performance of our proposed OLOR. Code is available at
https://github.com/rainbow-xiao/OLOR-AAAI-2024.

Introduction
With the rapid advancement of deep learning technology,
numerous large-scale image datasets have been established
(Schuhmann et al. 2022; Russakovsky et al. 2015; Schuh-
mann et al. 2021), resulting in many promising pre-trained
visual models (Radford et al. 2021; He et al. 2022; Bao et al.
2021). These pre-trained models can effectively solve re-
lated but distinct visual tasks through transfer learning and
fine-tuning techniques (Wu, Sun, and Ouyang 2023; Shen
et al. 2021). The fundamental fine-tuning methods are lin-
ear probing and full fine-tuning (Zhang, Isola, and Efros
2017). In linear probing, the pre-trained model’s backbone
is frozen, and only the head specific to the downstream task
is trained. However, this approach often restricts the per-
formance of the pre-trained backbone. On the other hand,
full fine-tuning involves training the entire network directly,
but it usually leads to knowledge forgetting (De Lange et al.
2021).
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Rehearsal methods (Rebuffi et al.; Rolnick et al. 2019; Liu
et al. 2020; Merlin et al. 2022), based on the replay mecha-
nism, involve retraining on a subset of stored upstream sam-
ples while learning new tasks. However, this approach is
quite inefficient. EWC (Kirkpatrick et al. 2017) proposes a
regularization-based fine-tuning method that uses the Fisher
information matrix to determine the importance of weight
parameters. This helps adjust the parameters between up-
stream and downstream tasks, reducing forgetting. L2-SP
(Xuhong, Grandvalet, and Davoine 2018) uses an L2 penalty
to restrict the updates of parameters, addressing knowledge
forgetting during fine-tuning. However, it is not compatible
with adaptive optimizers (Loshchilov and Hutter 2017; Guan
2023), which may produce the wrong regularization direc-
tion. Parameter isolation methods (Jia et al. 2022; Sohn et al.
2023) create new branches or modules for different network
models and tasks for downstream tasks. However, it intro-
duces extra new training parameters, requires certain train-
ing skills, and has lower generality than rehearsal methods.

In this paper, we propose a novel fine-tuning method com-
bined with optimizers to solve knowledge forgetting, called
OLOR (One step Learning, One step Review). Specifically,
OLOR introduces a weight rollback term to the weight up-
date term during the fine-tuning stage, allowing the model
to gradually approach the pre-trained weights while learning
the downstream task. This process avoids delay defects and
makes the weights of the upstream and downstream models
more similar. In addition, a layer-wise penalty is devised to
employ penalty decay and the diversified decay rate to ad-
just the weight rollback levels of layers. Penalty decay com-
bines feature pyramids with transfer learning, giving more
significant weight rollback to shallow layers related to shal-
low features such as color and texture, and smaller weight
backtracking to deep layers related to deep features such
as semantic information. The diversified decay rate is ad-
justed to enhance applicability according to the variations
between up and downstream tasks. OLOR with layer-wise
penalty enables each layer of the model to update accord-
ing to its needs, resulting in superior extraction of gener-
alized features. Finally, OLOR is incorporated into optimiz-
ers, thereby introducing negligible extra computational over-
head. It also works well with popular optimizers such as
Adam (Loshchilov and Hutter 2017; Guan 2023) and SGD
(Keskar and Socher 2017), meeting specific needs under var-



ious conditions.
Our OLOR fine-tuning method achieves state-of-the-art

performance on ten popular visual task datasets covering
general classification, fine-grained classification, long-tail
classification, cross-domain classification, object detection,
semantic segmentation, and instance segmentation. Valida-
tion experiments and ablation analysis demonstrate the per-
formance of OLOR in solving the problem of knowledge
forgetting and the rationality of the parameters.

The main contributions can be summarized as follows.

• We propose a novel fine-tuning method OLOR, which
cooperates with optimizers to solve the knowledge
forgetting issue, thereby improving fine-tuning perfor-
mance.
• The designed weight rollback avoids delay defects by in-

corporating the current gradient into the penalty term,
thereby correcting the penalty target and smoothing the
review process.
• A layer-wise penalty is presented to employ penalty de-

cay and the diversified decay rate to adjust the weight
rollback levels of layers for adapting varying downstream
tasks.
• The proposed method achieves state-of-the-art perfor-

mance on extensive downstream tasks, including differ-
ent types of image classification, different pre-trained
models, and image detection and segmentation.

Related Work
Pre-training Resource
With the rapid advancement of computer vision, numerous
large-scale datasets (Russakovsky et al. 2015; Schuhmann
et al. 2021, 2022) and pre-trained models have emerged.
These upstream pre-trained models possess rich features
and hold great potential for transferability to other specific
downstream tasks. ImageNet-21K (Russakovsky et al. 2015)
is the most popular large-scale dataset with over 14 million
images, and most networks are pre-trained on it. Recently,
a groundbreaking development has taken place with the re-
lease of LAION-2B (Schuhmann et al. 2022). This dataset
now reigns as the largest, comprising over 2 billion image-
text pairs. Then many pre-trained models have been pro-
posed, such as OpenClip (Radford et al. 2021), BEiT (Peng
et al. 2022), MAE (He et al. 2022), and EVA (Fang et al.
2023). It is worth noting that most of these models’ back-
bones are built upon the foundations of ViT (Dosovitskiy
et al. 2020) and ConvNeXt (Liu et al. 2022).

Fine-tuning Method
The process of fine-tuning usually faces an issue known as
knowledge forgetting (Toneva et al. 2018). It refers to the
model’s loss of pre-training learned representations during
fine-tuning (Mosbach, Andriushchenko, and Klakow 2020).
This leads to reduced accuracy on both the upstream and
downstream tasks, as the model cannot effectively utilize its
potential knowledge (De Lange et al. 2021; Vander Eeckt
and Van Hamme 2023).

To solve this issue, there are currently three categories
of approaches, i.e., replay methods, regularization methods,
and parameter isolation methods. Replay involves periodi-
cally training on a subset of upstream task data, thereby re-
taining knowledge of previous tasks and balancing old and
new information (Rebuffi et al.; Rolnick et al. 2019; Liu et al.
2020; Merlin et al. 2022). However, storing and managing
updtream task data pose challenges in terms of efficiency,
particularly in the contemporary era of massive datasets
(Schuhmann et al. 2022; Li et al. 2023). Regularization-
based methods employ techniques such as the fisher infor-
mation matrix (Kirkpatrick et al. 2017), weight decay (Ku-
mar et al. 2022), and L2 penalty (Xuhong, Grandvalet, and
Davoine 2018) to restrict parameter updates during fine-
tuning. However, these techniques may not be entirely ade-
quate in completely preventing knowledge forgetting. More-
over, the presence of adaptive optimizers (Loshchilov and
Hutter 2017; Guan 2023) can occasionally impact the di-
rection of regularization (Xuhong, Grandvalet, and Davoine
2018). Parameter isolation methods incorporate specific
branches or modules into the pre-trained network during
downstream fine-tuning, aiming to achieve knowledge trans-
fer through these new modules (Jia et al. 2022; Sohn et al.
2023; Wang et al. 2023). However, architectural modifica-
tions introduce new training parameters and intricate de-
signs. Moreover, training tricks play a crucial role in the ef-
fectiveness of the new module, often necessitating multiple
rounds of freezing and unfreezing.

To achieve a general and concise fine-tuning method to
address knowledge forgetting, the proposed OLOR fine-
tuning method combines weight rollback and optimizers to
adjust the range of parameter updates. This allows for en-
hancing pre-trained model representations to improve down-
stream fine-tuning performance.

Method
We propose a One step Learning, One step Review (OLOR)
method to reduce knowledge forgetting for fine-tuning.
OLOR can be seamlessly applied to various downstream
tasks among with different optimizers and models. The
overall framework is illustrated in Figure 1, and detailed
pipelines incorporating SGD and Adam are described in Al-
gorithm 1 and Algorithm 2. This section introduces the de-
lay defect of the previous regularization method, followed
by detailed explanations of the OLOR method, which com-
prises weight rollback and layer-wise penalty.

Previous Regularization Mechanisms have a Delay
Defect
The implementation of OLOR is inspired by L2 regulariza-
tion and weight decay, which are popular methods used to
regularize the model parameters. However, our findings in-
dicate that their effectiveness does not align with the initial
expectation. In the case of the classic SGD optimizer, L2
regularization can be regarded as equivalent to weight de-
cay (Loshchilov and Hutter 2017), which can be defined as
follows:

θt = (1− λ)θt−1 − ηtgt, (1)
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Figure 1: Overview of OLOR using Adam as optimizer. Where λi represents the penalty factor of ith layer, θt and θ̂t+1

represents the weight and the estimation of next weight (pre-weight) at timestep t, respectively. The transparency of the image
indicates the knowledge forgetting level.

Algorithm 1: OLOR for SGD with Momentum
1: input:
η ∈ IR: Initial learning rate, β ∈ [0, 1): momentum factor, θ0:
pre-trained weight, ι1, ι2 ∈ [0, 1], ι1 ≥ ι2: max and min level
of weight rollback respectively, γ ∈ IR: weight rollback power

2: initialize:
t ← 0: time step, m0 ← 0: initial moment vector, d0 ← 0:
initial discrepancy value, λi ← f(λ, i, n, ι1, ι2)/η: calculate
penalty factor λi through λi = f(λ, i, n, ι1, ι2) = ι2 + (1 −
i
n
)γ(ι1 − ι2), then scale it by dividing η to eliminate the scale

issue.
3: repeat
4: t← t+ 1
5: ηt ←LRScheduler(ηt−1) (Calculate ηt at timestep t)
6: gt ← ∇θft(θt−1) (Get batch gradient at timestep t)
7: mt ← βmt−1 + (1− β)gt (Compute momentum)
8: θt ← θt−1 − ηtλidt−1 − (1− ηtλi)ηtmt(Update weight)
9: dt ← (1− ηtλi)(dt−1 − ηtmt) (Update discrepancy)

10: until Stopping condition is met
11: return Parameters θt

where θt represents the model weights at iteration t, and
θt−1 is corresponding weights from the previous iteration. λ
is the regularization factor (weight decay strength). ηt is the
learning rate at iteration t. gt is the batch gradient computed
from the loss function at iteration t. Weight decay penalizes
the weights obtained from the previous iteration by pushing
them toward 0. However, in practice, limλ→1 θt = −ηtgt,

Algorithm 2: OLOR for Adam
1: input:
η ∈ IR: Initial learning rate, β1, β2 ∈ [0, 1): Exponential
decay rates for the moment estimates, ε: bias, θ0: pre-trained
weight, ι1, ι2 ∈ [0, 1], ι1 ≥ ι2: max and min level of weight
rollback respectively, γ ∈ IR: weight rollback power

2: initialize:
t ← 0: time step, m0 ← 0: initial first moment vector, v0 ←
0: initial second moment vector, d0 ← 0: initial discrepancy
value, λi ← f(λ, i, n, ι1, ι2)/η: calculate penalty factor λi
through λi = f(λ, i, n, ι1, ι2) = ι2+(1− i

n
)γ(ι1− ι2), then

scale it by dividing η to eliminate the scale issue.
3: repeat
4: t← t+ 1
5: ηt ←LR Scheduler(ηt−1) (Calculate ηt at timestep t)
6: gt ← ∇ft(θt−1) (Get batch gradient at timestep t)
7: mt ← β1mt−1 + (1− β1)gt (Update first moment vector)
8: vt ← β2vt−1 +(1−β2)g2t (Update second moment vector)
9: m̂t ← mt/(1− βt1)

10: v̂t ← vt/(1− βt2)
11: θt ← θt−1 − ηtλidt−1 − (1−ηtλi)ηtm̂t

(
√
v̂t+ε)

(Update weight)

12: dt ← (1− ηtλi)(dt−1 − ηtm̂t

(
√
v̂t+ε)

) (Update discrepancy)
13: until stopping criterion is met
14: return optimized parameters θt

the weights tend to be pushed towards the negative value
of the current gradient instead of 0. This behavior may be
different from the initial expectation. Furthermore, applying



weight decay can actually increase the current weight com-
pared to not applying it. This can be seen in the following
inequality:

(θt−1 − ηtgt − λθt−1)2 > (θt−1 − ηtgt)2, (2)

simplified as:{
ηgt < (1− λ

2 )θt−1, if θt−1 < 0,

ηgt > (1− λ
2 )θt−1, if θt−1 > 0.

If η, gt, λ, and θt−1 are in above conditions, using weight
decay will drive the current weight away from 0, which is
opposite to its target. Similarly, this issue with the decay ef-
fect also exists in other regularization mechanisms such as
L1 regularization, L2-SP, and similar methods.

Weight Rollback
The proposed weight rollback is a real-time regularization
method that closely follows each weight update step. It aims
to bring the current model weights closer to the pre-trained
weights to perform knowledge reviewing. Specifically, the
first step is to calculate the pre-weight θpre by gradient:

θpre = θt−1 − ηtgt, (3)

where θt−1 represents the model weights from the previous
time step, ηt is the learning rate at the current time step, and
gt denotes the gradient. Subsequently, the discrepancy ∆d
between θpre and the pre-trained weight θ0 is computed as:

∆d = θpre − θ0. (4)

Finally, the weight update process incorporates ∆d, result-
ing in the adjusted model weights θt:

θt = θt−1 − ηtgt − λ∆d. (5)

By substituting Eq. 3 and Eq. 4 into Eq. 5, we obtain:

θt = (1− λ)(θt−1 − ηtgt) + λθ0. (6)

This Eq. 6 ensures that limλ→1 θt = θ0, which aligns with
our expectation and prevents abnormal scenarios. In addi-
tion, as the gradient gt is also subject to a penalty, this pro-
cess may potentially help to mitigate gradient explosions.

In summary, the weight rollback technique moderates the
deviation between θt and θ0 at each step, thereby alleviating
overfitting to the current task and knowledge forgetting to
the previous task.

Layer-wise Penalty
Penalty Decay. For deep learning neural networks, each
layer can be conceptualized as a function that processes its
input. Given a layer index i, this process can be described as
follows:

xi+1 = fi(x
∗
i ), (7)

where the fi represents the ith layer. Let xui denotes the in-
put of fi in upstream tasks with a distribution of qi(xui ), and
xdi denotes the input of fi in downstream tasks with a dis-
tribution of pi(xdi ). Since qi(xui ) are always different from
pi(x

d
i ), we first unfreeze all layers to secure fi will have suf-

ficient update to handle such gap better.

Table 1: Details of the Fine-tuning datasets.

Dataset Images Categories Type
CIFAR-100 60,000 100 General
SVHN 600,000 10 General
CUB-200 11,788 200 Fine-grained
Stanford Cars 16,185 196 Fine-grained
Places-LT 62,500 365 Long-tailed
IP102 75,222 102 Long-tailed
OfficeHome 15,500 4 × 65 Cross-domain
PACS 9,991 4 × 7 Cross-domain
COCO2017 163,957 80 Detection
ADE20K 27,574 3688 Segmentation

In the study of image feature extraction, a prevailing un-
derstanding is that shallow layers are primarily responsible
for capturing superficial features (Lin et al. 2017) such as
color, texture, and shape. In contrast, deeper layers focus
on extracting more profound features like semantic infor-
mation. This implies that shallow layers are closely linked
to the distribution of the data, whereas deep layers are more
aligned with task-specific objectives. A foundational as-
sumption underlying transfer learning is that qi(xui ) bears
a degree of similarity to pi(xdi ). Consequently, shallow lay-
ers tend to exhibit similarities in both pre-training and fine-
tuning stages. Additionally, shallow layers require fewer up-
dates compared to their deeper counterparts.

Based on these observations, we propose a layer-wise
penalty decay mechanism for weight rollback. This ap-
proach gradually reduces the rollback level as the layer
depth increases. This strategy encourages shallow layers to
extract more general features in downstream tasks while pre-
serving the overall model capacity. For any layer at index i,
the penalty factor λi is computed using the following for-
mula:

λi = ι2 + (1− i

n
)(ι1 − ι2), (8)

where n represents the total number of layers in the pre-
trained model, ι1 and ι2 denote the maximum and minimum
rollback levels, respectively.

Diversified Decay Rate. Across various downstream
tasks, the target objectives often exhibit varying degrees of
dissimilarity from those of the upstream task. To accommo-
date this variability, we propose adjusting the rate of penalty
decay between layers by introducing a power exponent γ to
the weight rollback value. Mathematically, this adjustment
can be expressed as:

1− i

n
−→ (1− i

n
)γ . (9)

This dynamic adjustment helps mitigate the bias stemming
from a fixed rate decay of the similarities between qi(xui )
and pi(xdi ) across different layer indices i. Consequently, the
penalty decay becomes more adaptable and versatile, cater-
ing to a spectrum of requirements dictated by the various
downstream tasks.



Table 2: Comparison of fine-tuning results on various types of classification datasets (general, fine-grained, long-tailed, cross-
domain).

General (ID) Fine-Grained (ID) Long-Tailed (OOD) Cross-Domain (OOD)

Method Cifar-100 SVHN CUB-200 StanfordCars Places-LT IP102 OfficeHome PACS

ViT-B Backbone

Linear 72.50 58.79 75.01 38.03 31.95 64.93 79.96 71.88
Full 87.76 97.27 81.34 75.55 31.59 74.09 84.39 87.79
L2-SP 88.17 97.12 81.65 75.55 31.22 73.75 84.74 87.74
VPT 91.49 94.37 81.86 58.24 37.02 70.41 86.48 77.44
OLOR-Adam (ours) 92.89 97.35 84.84 82.02 38.07 75.34 89.05 94.38

ConvNeXt-B Backbone

Linear 81.70 69.21 87.85 50.21 36.41 70.77 92.40 93.46
Full 92.72 96.97 88.59 88.67 38.61 75.01 91.78 95.51
L2-SP 92.84 97.01 88.82 88.83 38.52 75.20 90.61 95.90
VPT 88.71 81.58 87.88 51.58 36.32 71.22 92.31 93.75
OLOR-SGD (ours) 92.86 97.12 89.47 88.99 39.36 75.44 92.59 96.63

Experiments
Experiment Configuration
Pre-trained Backbones. The experiments employ CNN-
based ConvNeXt (Liu et al. 2022) and Transformer-based
Vision Transformers (ViT) (Dosovitskiy et al. 2020) as
backbones. For both types of models, pre-trained weights
from ImageNet-1K (MAE) (Deng et al. 2009), ImageNet-
21K (supervised) (Russakovsky et al. 2015) and LAION-2B
(CLIP) (Schuhmann et al. 2022) datasets are utilized, where
the weights from ImageNet-21K undergoes supervised pre-
training, and the others are based on self-supervised pre-
training diagram.

Downstream Tasks. We experiment on ten popular visual
task datasets, i.e., CIFAR-100 (Krizhevsky, Hinton et al.
2009), SVHN (Netzer et al. 2011), CUB-200 (Wah et al.
2011), Stanford Cars (Krause et al. 2013), Places-LT (Zhou
et al. 2014), IP102 (Patterson et al. 2014), OfficeHome
(Venkateswara et al. 2017), and PACS (Li et al. 2017), cov-
ering general classification, fine-grained classification, long-
tailed classification, cross-domain classification, object de-
tection, semantic segmentation, and instance segmentation.
More details are listed in Table 1.

Baselines. To ensure a comprehensive comparison, we se-
lect the state-of-the-art and classic methods as our baselines.
These encompass Full Fine-tuning (Full), Linear Probing
(Linear) (Zhang, Isola, and Efros 2017), L2-SP (Xuhong,
Grandvalet, and Davoine 2018), and VPT (Jia et al. 2022).
Following prior works (Carion et al. 2020), CNN-based
Backbones are usually combined with the SGD optimizer,
while Transformer-based Backbones are paired with the
Adam optimizer.

Implementation Details. The input image size is set at
224 × 224. The batch size varies depending on the freez-
ing strategy. Specifically, 128, 256 and 512 are chosen for
full unfreezing, parameter isolated, and full freezing based
methods, respectively. Regarding the learning rate, for Con-

vNeXt backbones, we employ the SGD optimizer with a mo-
mentum of 0.9. The learning rates differ based on the freez-
ing strategy. In detail, 1e-2, 2e-2 and 4e-2 for full unfreez-
ing, parameter isolated, and full freezing based methods, re-
spectively. For ViT backbones, we use the Adam optimizer
with a momentum of (0.9, 0.999). The learning rates for ViT
backbones also vary according to the freezing strategy, i.e.,
1e-4 for full unfreezing, 2e-4 for partial unfreezing, and 4e-
4 for full freezing. We train on cross-domain datasets for
30 epochs, while for other datasets, we train for 50 epochs.
The experiments are performed on two A5000 GPU with
24 GB memory and Ubuntu 20.04 operating system. Python
3.8.3 serves as the programming language, while PyTorch
2.0.0 framework is employed. In addition, the source code is
openly available on GitHub.

Main Results
Results on classification tasks. To verify the wide adapt-
ability of OLOR on various types of datasets, we conduct a
comprehensive comparison with other state-of-the-art fine-
tuning methods. We evaluate these methods on 10 popular
classification datasets, each showcasing a range of data dis-
tributions and characteristics. In addition, the Backbone in
the experiment covers ViT-B and ConvNeXt-B, correspond-
ing to Adam and SGD optimizers, respectively.

The experiment results are listed in Table 2. It can be ob-
served that our OLOR achieves a new state-of-the-art on all
datasets. Notably, in in-distribution (ID) datasets, OLOR-
Adam surpasses the previously leading L2-SP method by an
impressive margin of 6.47% in accuracy. Moreover, when
confronted with two more challenging out-of-distribution
(OOD) datasets, OLOR-Adam achieves accuracy improve-
ments of 2.57% and 7.38%, respectively, outperforming the
optimal methods.

Since the pre-trained ConvNeXt model is more stable than
the ViT structure, there is not much difference between dif-
ferent methods in fine-tuning. However, our OLOR-SGD
still consistently improves fine-tuning accuracy across all



Table 3: Results of object detection and instance segmenta-
tion using the ConvNeXt-B as backbone.

Method Model Dataset Bboxm Segmm

Full Mask R-CNN COCO2017 40.20 36.00
OLOR Mask R-CNN COCO2017 41.10 36.90

Table 4: Results of semantic segmentation using the ViT-B
as backbone.

Method Model Dataset IOUm

Full UperNet ADE20K 43.65
OLOR UperNet ADE20K 44.62

datasets. These results demonstrate the robustness and ef-
fectiveness of the proposed OLOR in various tasks.

Results on detection and segmentation tasks. Due to the
complexity of detection and segmentation tasks, most exist-
ing fine-tuning methods struggle with applicability and val-
idation. However, integrated with the optimizer, our OLOR
approach can easily be applied to these tasks. Table 3 shows
the results of object detection and instance segmentation on
the COCO2017 dataset, while Table 4 showcases the perfor-
mance of semantic segmentation on the ADE20K dataset.
OLOR consistently outperforms the Baseline by approxi-
mately 1% in all metrics, demonstrating its versatility and
effectiveness in more complex detection and segmentation
tasks.

Results of using different pre-trained models. Consid-
ering that the performances of different fine-tuning methods
may vary when using different pre-trained models, we fur-
ther conduct experiments to explore and compare. The pre-
trained ViT-B model weights are obtained from ImageNet-
21K (supervised), LAION-2B (CLIP), and ImageNet-1K
(MAE). The fine-tuning experiments are based on the chal-
lenging PACS dataset.

As listed in Table 5, our OLOR consistently achieves
state-of-the-art results across all pre-trained models. Specif-
ically, OLOR surpasses other leading methods by 5.08%,
0.64%, and 3.47% when using Supervised, CLIP, and MAE,
respectively. While other methods struggle to adapt to all
pre-trained models simultaneously, our OLOR demonstrates
potential across all pre-trained models.

Table 5: Results of using different pre-trained models on the
PACS dataset.

Method Supervised OpenCLIP MAE

Linear 71.88 95.61 36.72
Full 87.79 47.17 84.18
L2-SP 87.74 45.56 85.79
VPT 76.76 97.46 50.54
OLOR (ours) 92.87 98.10 89.26
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fine-tuning is opposite to pre-training.

Summary of main results. In summary, the above ex-
periments show that OLOR achieves SOTA when applied
to multiple downstream tasks, utilizing diverse pre-trained
backbones. These results demonstrate the generalizability
and effectiveness of the OLOR fine-tuning method.

Analysis and Discussion
Compatibility Analysis. As shown in Figure 2, adopting
weight rollback in different types of models and optimiz-
ers generally improves the performance. Due to the restric-
tion on parameters, OLOR leads to slower loss converging
speed at first, but ultimately becomes competitive with the
full method. According to the validation results, OLOR po-
tentially helps reduce knowledge forgetting, resulting in far
superior top1 accuracy, especially when cooperating with
Adam applied in Vision Transformers.

Knowledge Forgetting Test. To assess potential knowl-
edge forgetting, we conduct a study on the PACS dataset
using ViT-B and Adam. Firstly, split the dataset into two
folds, the first fold contains data from three domains, car-
toon, photo and sketch respectively, denote as D1, the sec-
ond fold contains data from art painting domain, denote as
D2. For training stage, we first pre-train a model using D1
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Figure 4: Hyper-parameters exploring experiments on Cifar-
100(left) and PACS(right), both using ViT-B with Adam.
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Figure 5: Feature visualization on PACS test set. We use fea-
tures extracted by backbone to perform t-SNE visualization,
and the Top1-accuracy are reported additionally.

as train set and D2 as valid set for 100 epochs, then fine-
tune the model using D2 as train set and D1 as valid set for
30 epochs through Full and OLOR methods, the discrepancy
between fine-tuned weight θ and pre-trained weight θ0 using
different methods are recorded. Additionally, we perform
zero-shot reviewing, rolling back full fine-tuned weights to
pre-trained weights in 50 steps. Figure 3 reports the results,
weight discrepancy is generally much smaller using OLOR,
when setting max rollback level ι1 to 0.01, rollback power γ
to 1, OLOR not only performs well in knowledge reviewing,
but also benefits for current learning. And the zero-shot re-
viewing result shows weight rollback itself is indeed a help-
ful method for just reviewing.

Hyper-parameter Exploration. We conduct experiments
on Cifar-100(ID) and PACS(OOD) to study the appropriate
hyper-parameters for different types of tasks. Deep layers
usually require significant updates to effectively extract fea-
tures related to the downstream task, thus we set the min
rollback level ι2 to 0 by default to simplify hyper-parameter
settings, for max rollback level ι1, we search from {0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}, for weight roll-
back power γ, we search from {1, 2, 4}. Figure 4 shows the
findings. We suggest applying small power if the task target
of the fine-tuning stage is similar to the pre-training stage,
and large max rollback level if the data distribution of down-
stream task is similar to upstream task.

Table 6: Hyper-parameter configuration of OLOR for differ-
ent downstream tasks.

Datasets ViT-Based CNN-based

ι1 ι2 γ ι1 ι2 γ

Cifar-100 5e-3 0 2 5e-3 0 2
SVHN 5e-3 0 2 1e-4 0 2
CUB-200 5e-2 0 2 1e-2 0 2
StanfordCars 1e-2 0 4 1e-4 0 2
Places-LT 1e-1 0 4 1e-2 0 4
IP102 1e-1 0 1 5e-3 0 1
OfficeHome 1e-2 0 1 1 0 1
PACS 1e-1 0 4 5e-2 0 4
COCO2017 - - - 1e-2 0 2
ADE20K 1e-4 0 1 - - -

Table 7: Hyper-parameter configuration of OLOR for differ-
ent pre-trained models.

Pre-trained Method ι1 ι2 γ

Supervised 1e-2 0 2
OpenCLIP 1e-2 0 2
MAE 1e-2 0 2

Feature Visualization. We visualized the feature distribu-
tions for all methods on PACS test set through t-SNE to eval-
uate the quality of the extracted features. Experiments are
based on ViT-B and Adam. As shown in Figure 5, compared
with previous methods, OLOR generally separates the rep-
resentation vectors of different classes much better, demon-
strating superior ability on representation.

Conclusions
In this paper, we propose a novel fine-tuning method named
OLOR to solve the challenge of knowledge forgetting in
neural networks. OLOR encompasses weight rollback and
layer-wise penalty. OLOR incorporates the weight rollback
term into the weight update term at each step, and can be im-
plemented in popular optimizers. This operation allows the
model to gradually approach the pre-trained weights while
learning the downstream task, making the weights of the up-
stream and downstream models more similar. In addition,
the layer-wise penalty employs penalty decay and the diver-
sified decay rate to adjust the weight rollback levels of layers
for adapting varying downstream tasks. Our OLOR achieves
state-of-the-art performance on extensive downstream tasks.
Validation experiments and ablation analysis demonstrate
the effectiveness of the proposed method.

Additional Implementation Details
In the Main Results section, when conducting experiments
on various downstream tasks, OLOR utilizes the hyper-
parameter configurations listed in Table 6. For experiments
involving different pre-trained models, the hyper-parameter
configurations for OLOR are listed in Table 7.
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